If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10p^2+32p+6=0
a = 10; b = 32; c = +6;
Δ = b2-4ac
Δ = 322-4·10·6
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-28}{2*10}=\frac{-60}{20} =-3 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+28}{2*10}=\frac{-4}{20} =-1/5 $
| 3x-4+x+16=12.7 | | 11+w=19 | | 10-6r=-6r-10-5r | | 8k^2-10k-18=0 | | 3+3/4x=12 | | 11x+2=10x+5 | | 5|6y-1|9y=-102 | | -10+3x=6-5x | | (6x+16)+40=12x+2 | | 1.17^x=4 | | 1.5/2.5=w/1.5 | | 6x+18+x=180 | | -14x+3=-10x-1 | | 6w^2+30w+24=0 | | 4b=3b+6 | | 16u+(-17u)+(-12u)+9u+(-9u)=-13 | | -5/6y-1/9y=-102 | | 4m^2+11m+7=0 | | a2+5a−20=30a2+5a−20=30 | | 20x-9x+6x+(-10x)=-7 | | -8n-3=-6-5n | | 8x=4x+3.6 | | -3x^2-19x-26=0 | | (-7g)-(-6g)+4g=-9 | | 24=4(2x–5) | | -8p^2-31p+4=0 | | 9x-7=-6x+8 | | -x+3x-4=0 | | -1+2r=9+3r | | x^2+(x^2+34x+289)=25^2 | | 9z-(-12z)+(-6z)=-15 | | x+19.46=245.3 |